From local to global: Edge profiles to camera motion in blurred images

Subeesh Vasu    A.N. Rajagopalan


Input blurred image Latent image prediction Edge profile image Deblurred output

Abstract

In this work, we investigate the relation between the edge profiles present in a motion blurred image and the underlying camera motion responsible for causing the motion blur. While related works on camera motion estimation (CME) rely on the strong assumption of space-invariant blur, we handle the challenging case of general camera motion. We first show how edge profiles `alone' can be harnessed to perform direct CME from a single observation. While it is routine for conventional methods to jointly estimate the latent image too through alternating minimization, our above scheme is best-suited when such a pursuit is either impractical or inefficacious. For applications that actually favor an alternating minimization strategy, the edge profiles canserve as a valuable cue. We incorporate a suitably derived constraint from edge profiles into an existing blind deblurring framework and demonstrate improved restoration performance. Experiments reveal that this approach yields state-of-the-art results for the blind deblurring problem.



Technical Paper, Supplementary, Poster, and Bibtex

Subeesh Vasu and A.N. Rajagopalan, "From local to global: Edge profiles to camera motion in blurred images", IEEE International Conference on Computer Vision (CVPR), 2017

    Main paper      

    Supplementary material   

    Poster   

    BibTex    Results on Kohler Dataset [8]    Results on Lai Synthetic Non-uniform Blur Dataset [9]   


Experimental Results


Synthetic example

Blurred image Xu et al. CVPR 2013 Ours - EpAlone Ours - Xu + Ep
Estimated kernels - Xu et al. CVPR 2013 Estimated kernels - EpAlone Estimated kernels - Xu + Ep


Real examples

Blurred image Whyte et al. CVPR 2010 Xu et al. CVPR 2013 Pan et al. CVPR 2016 Ours - EpAlone Ours - Xu + Ep


Blurred image Gupta et al. ECCV 2010 Xu et al. CVPR 2013 Ours - EpAlone Ours - Xu + Ep


Blurred image Gupta et al. ECCV 2010 Xu et al. CVPR 2013 Ours - EpAlone Ours - Xu + Ep

Blurred image Gupta et al. ECCV 2010 Whyte et al. CVPR 2010 Xu et al. CVPR 2013 Pan et al. CVPR 2016 Ours - EpAlone Ours - Xu + Ep


Blurred image Gupta et al. ECCV 2010 Xu et al. CVPR 2013 Ours - EpAlone Ours - Xu + Ep


Blurred image Harmeling et al. NIPS 2010 Hirsch et al. ICCV 2011 Xu et al. CVPR 2013 Schuler et al. PAMI 2016 Ours - EpAlone Ours - Xu + Ep


Blurred image Whyte et al. CVPR 2010 Hirsch et al. ICCV 2011 Xu et al. CVPR 2013 Schuler et al. PAMI 2016 Ours - EpAlone Ours - Xu + Ep


Blurred image Gupta et al. ECCV 2010 Whyte et al. CVPR 2010 Xu et al. CVPR 2013 Pan et al. CVPR 2016 Ours - EpAlone Ours - Xu + Ep


Blurred image Harmeling et al. NIPS 2010 Xu et al. CVPR 2013 Ours - EpAlone Ours - Xu + Ep


References

[1] O. Whyte, J. Sivic, A. Zisserman, and J. Ponce. “Non-uniform deblurring for shaken images”, CVPR 2010.

[2] A. Gupta, N. Joshi, L. Zitnick, M. Cohen, and B. Curless. “Single image deblurring using motion density functions”, ECCV 2010.

[3] S. Harmeling, H. Michael, and B. Sch ̈olkopf. “Space-variant single-image blind deconvolution for removing camera shake”, NIPS 2010.

[4] M. Hirsch, C. J. Schuler, S. Harmeling, and B. Sch ̈olkopf. “Fast removal of non-uniform camera shake”, ICCV 2011.

[5] L. Xu, S. Zheng, and J. Jia. “Unnatural l0 sparse representation for natural image deblurring”, CVPR 2013.

[6] J. Pan, D. Sun, H. Pfister, and M.-H. Yang. “Blind image deblurring using dark channel prior”, CVPR 2016.

[7] C. J. Schuler, M. Hirsch, S. Harmeling, and B. Sch ̈olkopf. “Learning to deblur.”, PAMI 2016.

[8] Köhler, R, et al. “Recording and playback of camera shake: Benchmarking blind deconvolution with a real-world database.”, ECCV 2012.

[9] Lai, Wei-Sheng, et al. “A comparative study for single image blind deblurring.”, CVPR 2016.